Source code for horovod.ray.elastic

from typing import Callable, List, Any, Dict, Optional
import logging
import socket
import time
import os
import random
import math
import threading

from horovod.runner.common.util import timeout, secret

from horovod.runner.http.http_server import RendezvousServer
from horovod.runner.gloo_run import (create_slot_env_vars, create_run_env_vars,
from horovod.runner.elastic.settings import ElasticSettings
from horovod.runner.elastic.rendezvous import create_rendezvous_handler
from horovod.runner.elastic.discovery import HostDiscovery
from horovod.runner.elastic.driver import ElasticDriver

import ray
import ray.exceptions
from horovod.ray.worker import BaseHorovodWorker
from horovod.ray.utils import detect_nics

logger = logging.getLogger(__name__)

if hasattr(ray.exceptions, "GetTimeoutError"):
    GetTimeoutError = ray.exceptions.GetTimeoutError
elif hasattr(ray.exceptions, "RayTimeoutError"):
    GetTimeoutError = ray.exceptions.RayTimeoutError
    raise ImportError("Unable to find Ray Timeout Error class "
                      "(GetTimeoutError, RayTimeoutError). "
                      "This is likely due to the Ray version not "
                      "compatible with Horovod-Ray.")

class RayHostDiscovery(HostDiscovery):
    """Uses Ray global state to obtain host mapping.

    Assumes that the whole global state is available for usage."""

    def __init__(self, use_gpu=False, cpus_per_slot=1, gpus_per_slot=1):
        self.use_gpu = use_gpu
        self.cpus_per_slot = cpus_per_slot
        self.gpus_per_slot = gpus_per_slot
        logger.debug(f"Discovery started with {cpus_per_slot} CPU / "
                     f"{gpus_per_slot} GPU per slot.")

    def find_available_hosts_and_slots(self) -> Dict[str, int]:
        """Returns a dict mapping <hostname> -> <number of slots>."""
        alive_nodes = [k for k in ray.nodes() if k["alive"]]
        host_mapping = {}
        for node in alive_nodes:
            hostname = node["NodeManagerAddress"]
            resources = node["Resources"]
            slots = resources.get("CPU", 0) // self.cpus_per_slot
            if self.use_gpu:
                gpu_slots = resources.get("GPU", 0) // self.gpus_per_slot
                slots = min(slots, gpu_slots)
            slots = int(math.ceil(slots))
            if slots:
                host_mapping[hostname] = slots

        if host_mapping and sum(host_mapping.values()) == 0:
  "Detected {len(host_mapping)} hosts, but no hosts "
                        "have available slots.")
            logger.debug(f"Alive nodes: {alive_nodes}")
        return host_mapping

class TestDiscovery(RayHostDiscovery):
    def __init__(self,
        self._min_hosts = min_hosts
        self._graceful = _graceful
        self._max_hosts = max_hosts
        self._change_frequency_s = change_frequency_s
        self._last_reset_t = None
        self.verbose = verbose
        self._removed_hosts = set()

    def add_host(self, hosts):
        available_hosts = self._removed_hosts & hosts.keys()
        if available_hosts:
            host = random.choice(list(available_hosts))
            print("No hosts to add.")

    def remove_host(self, hosts):
        good_hosts = [k for k in hosts if k not in self._removed_hosts]

        from ray.autoscaler._private.commands import kill_node
        if good_hosts:
            if self._graceful:
                host = random.choice(good_hosts)
                host = kill_node(
                    os.path.expanduser("~/ray_bootstrap_config.yaml"), True,
                    False, None)

    def change_hosts(self, hosts):
        for host in self._removed_hosts:
            if host not in hosts:
        current_hosts = len(hosts) - len(self._removed_hosts)
        if current_hosts <= self._min_hosts:
        elif current_hosts >= self._max_hosts:
            if random.random() < 0.5:

    def find_available_hosts_and_slots(self):
        t = time.time()
        if self._last_reset_t is None:
            self._last_reset_t = t
        hosts = super().find_available_hosts_and_slots()
        if t - self._last_reset_t >= self._change_frequency_s:
            self._last_reset_t = t
        if self.verbose:
            print(f"Total hosts: {len(hosts)}")
        remaining = {
            k: v
            for k, v in hosts.items() if k not in self._removed_hosts
        if self.verbose:
            print(f"Remaining hosts: {len(remaining)} -- {remaining}")
        return remaining

[docs]class ElasticRayExecutor: """Executor for elastic jobs using Ray. Leverages the Ray global state to detect available hosts and slots. Assumes that the entire Ray cluster is available for the Executor to use. Args: settings: Configuration for the elastic job setup. You can use a standard Horovod ElasticSettings object or create one directly from ElasticRayExecutor.create_settings. use_gpu (bool): Whether to use GPU for allocation. cpus_per_slot (int): Number of CPU resources to allocate to each worker. gpus_per_slot (int): Number of GPU resources to allocate to each worker. env_vars (Dict): Environment variables to be set on the actors (worker processes) before initialization. override_discovery (bool): Whether for the ElasticRayExecutor to automatically provide a discovery mechanism for ElasticSettings. Example: .. code-block:: python import ray ray.init(address="auto") settings = ElasticRayExecutor.create_settings(verbose=True) executor = ElasticRayExecutor( settings, use_gpu=True, cpus_per_slot=2) executor.start() """
[docs] @staticmethod def create_settings(min_np: int = 1, max_np: int = None, reset_limit: int = None, elastic_timeout: int = 600, timeout_s: int = 30, ssh_identity_file: str = None, nics: str = None, **kwargs): """Returns a Settings object for ElasticRayExecutor. Note that the `discovery` property will be set at runtime. Args: min_np (int): Minimum number of processes running for training to continue. If number of available processes dips below this threshold, then training will wait for more instances to become available. max_np (int): Maximum number of training processes, beyond which no additional processes will be created. If not specified, then will be unbounded. reset_limit (int): Maximum number of times that the training job can scale up or down the number of workers after which the job is terminated. elastic_timeout (int): Timeout for elastic initialisation after re-scaling the cluster. The default value is 600 seconds. Alternatively, the environment variable HOROVOD_ELASTIC_TIMEOUT can also be used.' timeout_s (int): Horovod performs all the checks and starts the processes before the specified timeout. The default value is 30 seconds. ssh_identity_file (str): File on the driver from which the identity (private key) is read. nics (set): Network interfaces that can be used for communication. """ start_timeout = timeout.Timeout( timeout_s, message="Timed out waiting for {activity}. Please " "check connectivity between servers. You " "may need to increase the --start-timeout " "parameter if you have too many servers.") ssh_identity_file = ssh_identity_file or os.path.expanduser( "~/ray_bootstrap_key.pem") settings = ElasticSettings( discovery=None, min_np=min_np, max_np=max_np, elastic_timeout=elastic_timeout, reset_limit=reset_limit, num_proc=min_np, ssh_identity_file=ssh_identity_file, nics=nics, start_timeout=start_timeout, key=secret.make_secret_key() if secret else None, **kwargs) return settings
def __init__(self, settings: ElasticSettings, use_gpu: bool = False, cpus_per_slot: int = 1, gpus_per_slot: Optional[int] = None, env_vars: dict = None, override_discovery=True): if gpus_per_slot and not use_gpu: raise ValueError("gpus_per_slot is set, but use_gpu is False. " "use_gpu must be True if gpus_per_slot is set. ") gpus_per_slot = gpus_per_slot or int(use_gpu) if use_gpu and gpus_per_slot < 1: raise ValueError( f"gpus_per_slot must be >= 1: Got {gpus_per_slot}.") if override_discovery: settings.discovery = RayHostDiscovery( use_gpu=use_gpu, cpus_per_slot=cpus_per_slot, gpus_per_slot=gpus_per_slot) self.cpus_per_slot = cpus_per_slot self.gpus_per_slot = gpus_per_slot self.use_gpu = use_gpu self.settings = settings self.driver = None self.rendezvous = None self.env_vars = env_vars or {}
[docs] def start(self): """Starts the Horovod driver and services.""" self.rendezvous = RendezvousServer(self.settings.verbose) self.driver = ElasticDriver( rendezvous=self.rendezvous, discovery=self.settings.discovery, min_np=self.settings.min_np, max_np=self.settings.max_np, timeout=self.settings.elastic_timeout, reset_limit=self.settings.reset_limit, verbose=self.settings.verbose) handler = create_rendezvous_handler(self.driver) logger.debug("[ray] starting rendezvous") global_rendezv_port = self.rendezvous.start(handler) logger.debug(f"[ray] waiting for {self.settings.num_proc} to start.") self.driver.wait_for_available_slots(self.settings.num_proc) # Host-to-host common interface detection # requires at least 2 hosts in an elastic job. min_hosts = _get_min_start_hosts(self.settings) current_hosts = self.driver.wait_for_available_slots( self.settings.num_proc, min_hosts=min_hosts) logger.debug("[ray] getting common interfaces") nics = detect_nics( self.settings, all_host_names=current_hosts.host_assignment_order, ) logger.debug("[ray] getting driver IP") server_ip = socket.gethostbyname(socket.gethostname()) self.run_env_vars = create_run_env_vars( server_ip, nics, global_rendezv_port, elastic=True)
def _create_resources(self, hostname: str): resources = dict( num_cpus=self.cpus_per_slot, num_gpus=int(self.use_gpu) * self.gpus_per_slot, resources={f"node:{hostname}": 0.01}) return resources def _create_remote_worker(self, slot_info, worker_env_vars): hostname = slot_info.hostname loaded_worker_cls = self.remote_worker_cls.options( **self._create_resources(hostname)) worker = loaded_worker_cls.remote() worker.update_env_vars.remote(worker_env_vars) worker.update_env_vars.remote(create_slot_env_vars(slot_info)) if self.use_gpu: visible_devices = ",".join( [str(i) for i in range(slot_info.local_size)]) worker.update_env_vars.remote({ "CUDA_VISIBLE_DEVICES": visible_devices }) return worker def _create_spawn_worker_fn(self, return_results: List, worker_fn: Callable, queue: "ray.util.Queue") -> Callable: self.remote_worker_cls = ray.remote(BaseHorovodWorker) # event = register_shutdown_event() worker_env_vars = {} worker_env_vars.update(self.run_env_vars.copy()) worker_env_vars.update(self.env_vars.copy()) worker_env_vars.update({"PYTHONUNBUFFERED": "1"}) def worker_loop(slot_info, events): def ping_worker(worker): # There is an odd edge case where a node can be removed # before the remote worker is started, leading to a failure # in trying to create the horovod mesh. try: ping = worker.execute.remote(lambda _: 1) ray.get(ping, timeout=10) except Exception as e: logger.error(f"{slot_info.hostname}: Ping failed - {e}") return False return True worker = self._create_remote_worker(slot_info, worker_env_vars) if not ping_worker(worker): return 1, time.time() ray.get(worker.set_queue.remote(queue)) future = worker.execute.remote(lambda _: worker_fn()) result = None while result is None: try: # TODO: make this event driven at some point. retval = ray.get(future, timeout=0.1) return_results.append((slot_info.rank, retval)) # Success result = 0, time.time() except GetTimeoutError: # Timeout if any(e.is_set() for e in events): ray.kill(worker) result = 1, time.time() except Exception as e: logger.error(f"{slot_info.hostname}[{slot_info.rank}]:{e}") ray.kill(worker) result = 1, time.time() logger.debug(f"Worker ({slot_info}) routine is done!") return result return worker_loop
[docs] def run(self, worker_fn: Callable, callbacks: Optional[List[Callable]] = None) -> List[Any]: """Executes the provided function on all workers. Args: worker_fn: Target elastic function that can be executed. callbacks: List of callables. Each callback must either be a callable function or a class that implements __call__. Every callback will be invoked on every value logged by the rank 0 worker. Returns: List of return values from every completed worker. """ return_values = [] from ray.util.queue import Queue import inspect args = inspect.getfullargspec(Queue).args if "actor_options" not in args: # Ray 1.1 and less _queue = Queue() else: _queue = Queue(actor_options={ "num_cpus": 0, "resources": { ray.state.current_node_id(): 0.001 } }) self.driver.start( self.settings.num_proc, self._create_spawn_worker_fn(return_values, worker_fn, _queue)) def _process_calls(queue, callbacks, event): if not callbacks: return while if not queue.empty(): result = queue.get_nowait() for c in callbacks: c(result) # avoid slamming the CI elif event.is_set(): break time.sleep(0.1) try: event = threading.Event() _callback_thread = threading.Thread( target=_process_calls, args=(_queue, callbacks, event), daemon=True) _callback_thread.start() res = self.driver.get_results() event.set() if _callback_thread: _callback_thread.join(timeout=60) finally: if hasattr(_queue, "shutdown"): _queue.shutdown() else: done_ref = done, not_done = ray.wait([done_ref], timeout=5) if not_done: ray.kill( self.driver.stop() if res.error_message is not None: raise RuntimeError(res.error_message) for name, value in sorted( res.worker_results.items(), key=lambda item: item[1][1]): exit_code, timestamp = value if exit_code != 0: raise RuntimeError( 'Horovod detected that one or more processes ' 'exited with non-zero ' 'status, thus causing the job to be terminated. ' 'The first process ' 'to do so was:\nProcess name: {name}\nExit code: {code}\n' .format(name=name, code=exit_code)) return_values = [ value for k, value in sorted(return_values, key=lambda kv: kv[0]) ] return return_values